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1. INTRODUCTION

In a recent paper by Li [11], it is shown (among other things) that

C :=sup
n \ 1

sup
0 < x [ 1

sup
w ¥ W

Bnw(x)
w(x)

=2, (1)

where Bnw is the nth Bernstein polynomial of the function w,

Bnw(x) :=C
n

k=0
w(k/n) pn, k(x), pn, k(x) :=R

n
k
S xk(1−x)n−k,

and W is the set of all continuous moduli of continuity on [0, 1], i.e., the
set of all real nonidentically zero continuous functions on [0, 1] which
vanish at 0 and are nondecreasing and subadditive.
It should be said that, since Bn(W) … W (n \ 1) (cf. [11]), and each w ¥ W

coincides with its usual modulus of continuity, such a result can be viewed
as a consequence of [4, Theorem 9 and the subsequent Remark (ii)].



On the other hand, in the same paper [11], the problem of determining
whether or not C* < 2 is raised, C* being defined as C in (1) but replacing
W by the subset

W* :={w ¥ W : x−1w(x) is nonincreasing on (0, 1]}.

The author observes that the challenge of the problem comes from the fact
that

sup
0 < x [ 1

sup
w ¥ W

ŵ(x)
w(x)

= sup
0 < x [ 1

sup
w ¥ W*

ŵ(x)
w(x)

=2, (2)

where ŵ stands for the least concave majorant of w.
In the present paper (Section 5), we calculate the value of C*, which is

actually much closer to 1 than to 2 and turns out to be the same that the
corresponding constant for the well known Szász–Mirakyan operator over
the interval [0,.) (see Section 6). Such a coincidence seems to be of a
probabilistic nature, since it is closely related with the classical Poisson
approximation to the binomial distribution.
The preceding cases also invite to consider what happens with other

celebrated operators such as the Baskakov operator, the gamma operator,
and the beta operator, for instance. So, we have found it interesting to do a
unifying approach by investigating the above mentioned problems in the
general setting of operators of probabilistic type (also called Bernstein-type
operators). In the next section, under fairly general assumptions, we obtain
formulae expressing the best constants in terms of appropriate characteris-
tics of the involved probability measures. Section 3 provides sufficient
conditions for the preservation of the classes of moduli of continuity. In
Sections 5–9, we apply the general results to the aforementioned five par-
ticular examples of operators, and obtain the exact values of the corre-
sponding constants. Some necessary auxiliary results are collected in
Section 4.

2. GENERAL FORMULAE

In this section, I will denote either the interval [0, 1] or the interval
[0,.), W and W* will be the classes of moduli of continuity defined as in
the preceding section but replacing [0, 1] by I, and L will be a Bernstein-
type operator over I, i.e., a positive linear operator allowing for a repre-
sentation of the form

Lf(x)=Ef(Z(x)), x ¥ I, f ¥L, (3)
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where E denotes mathematical expectation, Z :={Z(x): x ¥ I} is an inte-
grable stochastic process taking values in I, and L stands for the domain
of L, that is, the set of all real measurable functions on I for which the
right-hand side in (3) makes sense. It should be observed that the integra-
bility of Z guarantees that W …L, since we have, for w ¥ W and x ¥ I,

Lw(x) [ 2w(EZ(x)). (4)

Actually, (4) trivially holds when EZ(x)=0 (since, in our setting, this
implies that P(Z(x)=0)=1, and, therefore, Lw(x)=0), while, in case that
EZ(x) > 0, we have by the subadditivity of w

Ew(Z(x)) [ E ! Z(x)
EZ(x)
" w(EZ(x)) [ 11+EZ(x)

EZ(x)
2 w(EZ(x)),

where

KaL :=the smallest integer not less than a.

In particular, L contains the monomial e1(x) :=x. L is said to be centered
at x ¥ I, if Le1(x)=EZ(x)=x.
Let C(x) and C*(x) be defined by

C(x) :=sup
w ¥ W

Lw(x)
w(x)

, 0 < x ¥ I, (5)

and

C*(x) :=sup
w ¥ W*

Lw(x)
w(x)

, 0 < x ¥ I. (6)

Our main result in this section is the following theorem giving formulae for
these quantities in terms of the probability distribution of Z(x). We denote
by 1A the indicator function of the subset A of the real line.

Theorem 1. We have, for 0 < x ¥ I,

C(x)=E !Z(x)
x
", (7)

and

C*(x)=P(Z(x) > 0)+
1
x
E((Z(x)−x) 1(x,.)(Z(x))). (8)
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In particular, if L is centered at x, then

C(x) [ 1+P(Z(x) > 0) [ 2, (9)

and

C*(x)=P(Z(x) > 0)+
1
2x

E |Z(x)−x|. (10)

Proof. Fix 0 < x ¥ I. For each w ¥ W, the subadditivity property leads
to

Lw(x)=Ew(Z(x)) [ E !Z(x)
x
" w(x),

implying that

C(x) [ E !Z(x)
x
".

To show the converse inequality, we adapt an argument taken from [3].
For each 0 < e < x, we define we( · ) in the following way

we(z) :=!
z
x
"+C

.

k=0

1z−kx
e

−12 1(kx, kx+e)(z), z ¥ I.

It is readily checked that we ¥ W. Moreover, we have we(x)=1, and

we( · ) ‘ !
·
x
" as e a 0.

We therefore have, by the monotone convergence theorem,

C(x) \ lim
e a 0

Lwe(x)=lim
e a 0

Ewe(Z(x))=E !Z(x)
x
",

completing the proof of (7). Relation (9) immediately follows from (7), the
centeredness assumption, and the fact that we have, for every nonnegative
random variable U,

E KUL [ P(U > 0)+EU.

To show (8), let w* ¥ W*. Using that w*(0)=0, that w* is nondecreasing,
and the specific property of w* as an element of W*, we have
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Lw*(x)=E(w*(Z(x)) 1(0, x](Z(x)))+E(w*(Z(x)) 1(x,.)(Z(x)))

[ w*(x) E(1(0, x](Z(x)))+
w*(x)
x

E(Z(x) 1(x,.)(Z(x)))

=w*(x) 1E(1(0,.)(Z(x)))−E(1(x,.)(Z(x)))

+
1
x
E(Z(x) 1(x,.)(Z(x)))2

=w*(x) 1P(Z(x) > 0)+
1
x
E((Z(x)−x) 1(x,.)(Z(x)))2 ,

implying that

C*(x) [ P(Z(x) > 0)+
1
x
E((Z(x)−x) 1(x,.)(Z(x))).

To show the converse inequality, let 0 < e < x, and let wg
e ( · ) be defined by

wg
e (z) :=

z
e
1[0, e)(z)+1[e, x](z)+

z
x
1(x,.)(z), z ¥ I. (11)

It is readily checked that wg
e ¥ W*. We also have that wg

e (x)=1, and

wg
e ( · ) ‘ w

g
0 ( · ) as e a 0,

where

wg
0 (z) :=1(0, x](z)+

z
x
1(x,.)(z), z ¥ I.

By the monotone convergence theorem, we therefore have

C*(x) \ lim
e a 0

Lwg
e (x)=Lwg

0 (x)=the right-hand side in (8),

finishing the proof of (8). Finally, (10) follows from (8) and the fact that we
have, by the centeredness assumption,

E((Z(x)−x) 1(x,.)(Z(x)))=E((x−Z(x)) 1[0, x](Z(x)))=
1
2 E |Z(x)−x|.

The proof of the theorem is complete. L

Remark 1. Against what happens in [11, 4], the notion of a least
concave majorant does not play any role in our developments. However, in
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connection with (2), it is worth noting that, when I=[0, 1], the least
concave majorant of the modulus wg

e defined in (11) is given by

ŵg
e (z)=

z
e
1[0, e)(z)+

x− e+(1−x) z
x(1− e)

1[e, 1](z),

and we therefore have

sup
0 < e < x [ 1

ŵg
e (x)
wg
e (x)

= sup
0 < e < x [ 1

2x−x2− e
x(1− e)

=2.

3. PRESERVATION OF W AND W*

In this section I, L, and Z are the same as in (3), and we are interested in
conditions guaranteeing the preservation by L of the classes W and W*. The
following theorem gives sufficient conditions for the preservation of W. It is
actually (except for the question of continuity) a part of the proof of [3,
Theorem 1], and it is included here for the sake of completeness. We use
the notation U 4 V to indicate that the random variables U and V have the
same probability distribution.

Theorem 2. Assume that the following assumptions are fulfilled:

(H1) Z(0)=0 a.s.

(H2) limx a 0 EZ(x)=0.
(H3) For all 0 [ x < y ¥ I, we have Z(y)−Z(x) 4 Z(y−x).

Then, L(W) … W.

Proof. Let w ¥ W. We have from (H1) that Lw(0)=w(0)=0. On the
other hand, let, 0 [ x < y ¥ I. From (H3), we have that Z(x) [ Z(y) a.s.;
therefore, Lw is nondecreasing, as w is. From the subadditivity of w, and
(H3), we also have

Lw(y)=Ew(Z(x)+Z(y)−Z(x)) [ Ew(Z(x))+Ew(Z(y)−Z(x))

=Lw(x)+Lw(y−x),

showing the subadditivity of Lw. Finally, Lw is continuous at 0 (by the
subadditivity, this already implies that Lw is continuous at each x ¥ I),
since the relation limx a 0 Lw(x)=0 follows from (4), (H2) and the con-
tinuity of w. This completes the proof that Lw ¥ W. L
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Remark 2. Condition (H1) means that L is interpolating at 0. This
condition is obviously necessary for the existence of a constant C > 0 such
that

Lw(x) [ Cw(x), x ¥ I, w ¥ W*.

In the presence of (H1), (H2) means that Le1 is continuous at 0, and (H3)
means that the stochastic process Z has stationary increments, but this last
condition is much more difficult to characterize in terms of the operator L.
Conditions (H1) and (H3) correspond to conditions (B) and (C) in [3], and
it should be observed that such conditions already imply the assumption
(A) in the same paper.

Remark 3. For the operators fulfilling conditions (H1) and (H3), it is
shown in [3] that

C0(x) :=sup
f ¥M

w(Lf; x)
w(f; x)

=E !Z(x)
x
", 0 < x ¥ I,

where w(f; · ) stands for the usual modulus of continuity of f, and

M :={f ¥L : 0 < w(f; 1) <.}.

In other words, according to (7), we have C0(x)=C(x) (0 < x ¥ I). In the
same work, the authors calculate the best uniform constants for the con-
crete operators to be considered in Sections 5–9. For additional results in
the same line, and extensions to multivariate operators, we refer to [5–7].

In the following theorem giving conditions for the preservation of the
class W*, E[U | V] denotes the conditional expectation of the random
variable U, given the random variable V.

Theorem 3. Assume that Z fulfills conditions (H1) and (H2) above, as
well as the following two conditions

(H4) For all 0 [ x < y ¥ I, we have Z(x) [ Z(y) a.s.
(H5) For all 0 [ x < y ¥ I, we have E[Z(x) | Z(y)]=x

y Z(y) a.s.

Then, L(W*) … W*.

Proof. Let w ¥ W*. As in the preceding proof, we have that Lw(0)=0,
and that Lw is nondecreasing (by (H4)) and continuous at 0. On the
other hand, let 0 < x < y ¥ I. Using successively the condition w(0)=0,
(H4) and the specific property of w (as a member of W*), the properties of
conditional expectation, and (H5), we obtain
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Lw(x)=E(w(Z(x)) 1(0,.)(Z(x)))

=E 1w(Z(x))
Z(x)

Z(x) 1(0,.)(Z(x))2

\ E 1w(Z(y))
Z(y)

Z(x) 1(0,.)(Z(y))2

=E 1E 5w(Z(y))
Z(y)

Z(x) 1(0,.)(Z(y)) : Z(y)62

=E 1w(Z(y))
Z(y)

1(0,.)(Z(y)) E[Z(x) | Z(y)]2

=E 1w(Z(y))
Z(y)

1(0,.)(Z(y))
x
y
Z(y)2

=
x
y
Lw(y),

showing that the function x−1Lw(x) is nonincreasing on I−{0}. This
already entails the subadditivity of Lw, and completes the proof that
Lw ¥ W*. L

Remark 4. In probabilistic terms, condition (H4) (which is equivalent
to saying that L preserves monotonicity) means that the family of random
variables {Z(x): x ¥ I} is nondecreasing for the usual stochastic order, while
(H5) means that the family {x−1Z(x): 0 < x ¥ I} is nonincreasing for the
convex order (see [12]).

4. AUXILIARY RESULTS

In Sections 5–9, we will consider several celebrated examples of Bernstein-
type operators, all of which are centered at each x in the corresponding
interval. The usual analytic definition of each operator will be accompanied
by a specific probabilistic representation useful for our purposes. Such
representations have been already used in other works; see, for instance,
[1–3, 5–7]. In view of what is said in Remark 3 above, we will only discuss
the questions concerning W*. Our calculations concerning C*(x) (recall
formula (10)) will be considerably facilitated by the fact that the literature
on probability theory provides explicit formulae for the mean deviations of
the involved probability measures. In this section, we collect other neces-
sary auxiliary results, some of which may be of interest in its own right.
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The symbol N · M stands for the integral part (or floor function), and 00 is
understood as 1.

Lemma 1. Let a and ak (k=0, 1, 2, ...) be defined by

a :=sup
x \ 0

1+e−x 1 x
NxM

NxM!
−12 , ak := sup

k [ x < k+1
1+e−x 1x

k

k!
−12 .

Then,

a=sup
k \ 0
ak=a3=1+e−a3

a23
2
=1.18559..., (12)

where

a3 :=1+1
3 (108−27`15 )1/3+(4+`15 )1/3 (13)

is the unique solution to the equation x3−3x2−6=0 in the interval [3, 4).

Proof. It is clear that a=supk \ 0 ak, a0=1, and, for k \ 1,

ak=1+e−ak
ak−1k

(k−1)!
,

where ak is the unique solution to the equation xk−kxk−1−k!=0 in the
interval [k, k+1). It is also readily checked that

a1=1+exp(−2), and a2=1+exp(−1−`3 )(1+`3 ).

By using computational devices, we can obtain the values of a3 and a3, as
they are given in (13) and (12), respectively, and we also have that

a4=4.30153..., and a4=1.17971...

(the expression by roots of a4 being too long to be written here). On the
other hand, we have, for k \ 0,

ak [ a
−

k := sup
k [ x < k+1

1+e−x
xk

k!
=1+e−k

kk

k!
.

Since the sequence {a −k: k \ 0} is nonincreasing, and

max {a0, a1, a2, a3, a4, a
−

5}=a3,

the conclusion follows. L
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Lemma 2. For 2 [ k [ x < k+1 [ n (k being an integer), we have

11−x
n
2n−1 < e−x < 11−x

n
2n−(k+1) D

k

i=1

11− i
n
2 . (14)

Proof. Let 2 [ k [ x < k+1 [ n be fixed. Using the Taylor series of
log(1+· ), the logarithm of the right-hand side in (14) is equal to

−(n−(k+1)) C
.

r=1

x r

rn r
− C

.

r=1

1 r+2r+·· ·+kr

rn r
=−x+C

.

r=1

ur(x)
r(r+1) n r

,

where

ur(x) :=(r+1)(k+1) x r−rx r+1−(r+1)(1r+2r+·· ·+kr),

and the proof of the second inequality in (14) will be complete as soon as
we show that

ur(x) > 0, r \ 1.

Since ur( · ) is nondecreasing on [k, k+1) (as it readily follows by differen-
tiation), we actually have, for r \ 1,

ur(x) \ ur(k)=kr+1−(r+1)(1r+2r+·· ·+(k−1) r) > 0,

the last inequality because

1 r+2r+·· ·+(k−1) r

k r+1
=

1
k
C
k−1

i=1

1 i
k
2 r < F

1

0
t r dt=

1
r+1

.

Similarly, the first inequality in (14) follows from the fact that

(n−1) log 11−x
n
2=−x− C

.

r=1

x r[rx−(r+1)]
r(r+1) n r

,

and rx−(r+1) \ 0, for 2 [ x < n and r \ 1, with equality only when x=2
and r=1. This completes the proof of Lemma 2. L

Lemma 3. We have, for 2 [ x < n,

Rn−1
NxM
S1x

n
2 NxM 11−x

n
2n− NxM−11−x

n
2n < e−x 1 x

NxM

NxM!
−12 . (15)
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Proof. Denote by fn(x) the difference between the right-hand side and
the left-hand side in (15). We have from Lemma 2

fn(2)=e−2−11−2
n
2n−1 > 0.

To achieve the result, it therefore suffices to show that fn( · ) is increasing
on [2, n). Since such a function is continuous, this reduces to show that it
has a positive derivative on the interval (k, k+1), for each integer
k ¥ [2, n). Fix the integer k. For x ¥ (k, k+1), we can write

fn(x)=gn(x)+hn(x),

where

gn(x) :=11−
x
n
2n−e−x,

and

hn(x) :=5e−x−11−
x
n
2n−k D

k

i=1

11− i
n
26 xk

k!
.

Since

g −n(x)=e−x−11−x
n
2n−1,

and

h −n(x)=511−
x
n
2n−(k+1) D

k

i=1

11− i
n
2−e−x6 xk−1

(k−1)!
1x
k
−12 ,

the conclusion follows from Lemma 2. L

Remark 5. From the proof of Lemma 2, it clearly follows that the left-
hand side (resp., the right-hand side) in (14) is increasing (resp., decreasing)
as n increases (k and x remaining fixed). We therefore have

Kn(x) < Kn+1(x), 2 [ x < n,

where Kn(x) is the left-hand side in (15), as it follows by the same
argument showing Lemma 3.
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5. BERNSTEIN OPERATORS

For each n=1, 2, ..., the Bernstein operator Bn over the interval [0, 1]
given in the introduction allows for the representation

Bnf(x)=Ef 1Sn(x)
n
2 ,

where

Sn(x) :=C
n

i=1
1[0, x](Xi),

and X1, X2, ... are independent and on the interval [0, 1] identically dis-
tributed random variables, so that the random variable Sn(x) has the
binomial distribution with parameters n and x.
For these operators, we have the following results, where we write Cg

n (x)
instead of C*(x) for the quantity defined in (6) corresponding to the
operator Bn (the same convention will be used in Sections 6–9 below).

Theorem 4. The following assertions hold:

(a) Bn(W*) … W* (n \ 1).

(b) Cg
n (x)=1−(1−x)n+Rn−1

NnxM
S x NnxM(1−x)n− NnxM (0 < x [ 1, n \ 1).

(c) sup0 < x [ 1 supn \ 1 C
g
n (x)=a, where a is the same as in Lemma 1.

Proof. Part (a) follows from Theorem 3. In fact, conditions (H1), (H2),
and (H4) are immediately verified, and, for (H5), we can refer to [1,
pp. 133–134]. An alternative analytic proof runs as follows: For w ¥ W*,
x ¥ (0, 1], and n \ 2 (the case n=1 is trivial), we have (using the same
notations as in the Introduction)

d
dx
1Bnw(x)

x
2=(n−1) C

n−2

k=0

5w 1k+2
n
2 n
k+2

−w 1k+1
n
2 n
k+1
6 pn−2, k(x)

[ 0.

Part (b) directly follows from (10), by using the fact that

P(Sn(x) > 0)=1−(1−x)n,

and the well known formula for the mean deviation of the binomial
distribution (cf. [10, (3.15)])

E |Sn(x)−nx|=2nx Rn−1
NnxM
S x NnxM(1−x)n− NnxM.
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From part (b), we have that

lim
nQ.

Cg
n (x/n)=1+e−x 1 x

NxM

NxM!
−12 , x > 0,

showing that

sup
0 < x [ 1

sup
n \ 1

Cg
n (x) \ a,

and the proof of the theorem will be complete as soon as we show that

sup
0 < x [ 1

sup
n \ 1

Cg
n (x) [ a. (16)

First, we obviously have

Cg
n (x)=1=Cg

n (1), n \ 1, x ¥ (0, 1/n). (17)

Second, it is readily checked that, for n \ 2, the maximum of the function
Cg
n ( · ) on the interval [1/n, 2/n) is achieved at the point xn :=2n−1−n−2.

We therefore have, by Lemma 2 and Lemma 1,

sup
1/n [ x < 2/n

Cg
n (x)=Cg

n (xn)=1+11− 2
2n
22n−1 < 1+e−2 < a. (18)

Finally, we directly have from Lemma 3 and Lemma 1

Cg
n (x) < 1+e−nx 1 (nx)

NnxM

NnxM!
−12 [ a, n \ 3, 2/n [ x < 1, (19)

and the inequality (16) follows from (17)–(19). L

6. SZÁSZ–MIRAKYAN OPERATORS

For t > 0, the Szász–Mirakyan operator St over [0,.) is defined by

Stf(x) :=C
.

k=0
f(k/t) pt, k(x)=Ef 1N(tx)

t
2 , (20)

where the pt, k(x) are the weights of the Poisson distribution with parameter
tx

pt, k(x) :=e−tx
(tx)k

k!
,

and {N(u): u \ 0} is a standard Poisson process.
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For these operators, we assert the following.

Theorem 5. We have:

(a) St(W*) … W* (t > 0).
(b) Cg

t (x)=1+e−tx((tx)
NtxM

NtxM! −1) (x > 0, t > 0).
(c) supx > 0 C

g
t (x)=a (t > 0), where a is the same as in Lemma 1.

Proof. Part (a) can be shown by using the same probabilistic or analytic
arguments as in the proof of Theorem 4(a). Part (b) follows from (20), (10),
and the fact that we have for t, x > 0,

P(N(tx) > 0)=1−pt, 0(x)=1−e−tx,

as well as (cf. [10, (4.19)])

E |N(tx)−tx|=2txe−tx
(tx) NtxM

NtxM!
.

Finally, part (c) is an immediate consequence of part (b) and Lemma 1. L

Remark 6. It should be remarked that the best uniform constant
supx > 0 C

g
t (x) does not depend upon t (as it could be expected in advance

from the very definition of St), as well as the coincidence (already men-
tioned in the Introduction) with the best uniform constant for the family of
the Bernstein operators.

7. GAMMA OPERATORS

For t > 0, the gamma operator Gt over the interval [0,.) is the integral
operator defined by

Gtf(x) :=
1
C(t)

F
.

0
f 1xh

t
2 h t−1e−h dh=Ef 1xUt

t
2 ,

where {Ut: t \ 0} is a standard gamma process, i.e., a stochastic process
starting at 0, having stationary independent increments, and such that, for
each t > 0, the random variable Ut has the gamma distribution with density

gt(h) :=
h t−1e−h

C(t)
1(0,.)(h). (21)

For these operators, we can assert the following.
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Theorem 6. We have:

(a) Gt(W*) … W* (t > 0).
(b) Cg

t (x)=1+gt(t) (t, x > 0), where gt is given in (21).
(c) supt, x > 0 C

g
t (x)=2.

Proof. Part (a) is shown in a very easy way. Actually, for w ¥ W*, it is
immediate that Gtw( · ) is a nondecreasing continuous function on the semi-
axis vanishing at 0, and we have, for 0 < x < y,

Gtw(x)=Ew 1xUt
t
2 \ x

y
Ew 1yUt

t
2=x

y
Gtw(y).

From (10), we have for t, x > 0

Cg
t (x)=P(Ut > 0)+

1
2
E : Ut

t
−1:=1+

1
2
E : Ut

t
−1: , (22)

and the relation (cf. [8, (17.12)])

E |Ut−t|=
2t te−t

C(t)

yields part (b). Finally, we have

2=1+lim
t a 0

gt(t) [ sup
t, x > 0

Cg
t (x) [ 2

(the last inequality by (9)), showing part (c) and completing the proof of
the theorem. L

Remark 7. It is worth noting that Theorem 6(c) actually provides a
new proof for the fact (first proved in [3]) that supt, x > 0 C

0
t (x)=2, where

C0t (x) is the quantity (corresponding to the operator Gt) defined in
Remark 3 above.

8. BASKAKOV OPERATORS

For t > 0, the Baskakov operator Ht over [0,.) is defined by

Htf(x) :=C
.

k=0
f(k/t) bt, k(x)=E 1N(xUt)

t
2 ,
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where the bt, k(x) are the weights of the negative binomial distribution with
parameters t, x, i.e.,

bt, k(x) :=R
t+k−1

k
S xk

(1+x) t+k
,

{N(u): u \ 0} is a standard Poisson process, and {Ut: t \ 0} is a standard
gamma process independent of the former.
For these operators, we establish the following.

Theorem 7. We have:

(a) Ht(W*) … W* (t > 0).

(b) Cg
t (x)=1−(1+x)−t+R t+NtxM

NtxM
S x NtxM

(1+x) t+NtxM (t, x > 0).

(c) supt, x > 0 C
g
t (x)=2.

Proof. Part (a) is shown in the same probabilistic or analytic way that
Theorem 4(a) or Theorem 5(a), and we omit the details. Part (b) follows
from (10) and the facts that, for t, x > 0,

P(N(xUt) > 0)=1−bt, 0(x)=1−(1+x)−t,

and (cf. [10, (5.26)])

E |N(xUt)− tx|=2tx R t+NtxM
NtxM
S x NtxM

(1+x) t+NtxM .

Finally, we show part (c). First, we observe that, by the strong law of large
numbers for the standard Poisson process, we have

lim
xQ.

N(xUt)
xt

=
Ut
t
a.s., t > 0.

Using this fact, (10), and Fatou’s lemma, we therefore have, for t > 0,

sup
x > 0

Cg
t (x) \ lim inf

xQ.
Cg
t (x) \ 1+

1
2
E : Ut

t
−1:=1+gt(t),

where gt( · ) is given in (21). Thus, part (c) follows from (9) and
Theorem 6(b,c). L

Remark 8. Remark 7 above remains true if Gt and Theorem 6(c) are
replaced by Ht and Theorem 7(c), respectively.
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9. BETA OPERATORS

For t > 0, the beta operator bt over the interval [0, 1] is defined by

btf(x) :=˛F
1

0
f(h) bt(x; h) dh) if x ¥ (0, 1)

f(x) if x=0 or 1

=Ef 1Utx
Ut
2 ,

where bt(x; · ) is the density of the beta distribution with parameters tx,
t(1−x), i.e.,

bt(x; h) :=
h tx−1(1−h) t(1−x)−1

B(tx, t(1−x))
1(0, 1)(h) (22)

(B( · , · ) being the beta function), and {Ut: t > 0} is the same standard
gamma process as is Section 7. It should be observed that, since the opera-
tor bt interpolates at 1, we have C

g
t (1)=1.

The main results for these operators are collected in the following
theorem.

Theorem 8. We have:

(a) bt(W*) … W* (t > 0).
(b) Cg

t (x)=1+1−x
t bt(x; x) (t > 0, x ¥ (0, 1)), where bt( · ; · ) is given in

(22).
(c) sup0 < x < 1 C

g
t (x)=2 (t > 0).

Proof. Part (a) follows by applying Theorem 3 (conditions (H1), (H2),
and (H4) are immediately verified, and, for (H5), we refer to [2, p. 4]). Part
(b) follows from (10), the fact that

P 1Utx
Ut

> 02=1,

and the following formula for the mean deviation of the beta distribution
(cf. [9, (25.18a)])

E : Utx
Ut

−x :=2
t
x tx(1−x) t(1−x)

B(tx, t(1−x))
.
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Finally, using part (b), it is readily checked that, for t > 0,

sup
0 < x < 1

Cg
t (x) \ lim

x a 0
Cg
t (x)=2,

which, together with (9), yields part (c). This completes the proof of the
theorem. L

Remark 9. The observations in Remarks 7 and 8 also hold for beta
operators.
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